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Abstract—Diagnosing malaria, as the first step to 
control the spread of the infectious disease, can be 
significantly optimized with a Computer Aided 
Diagnosis system. This study is proposed to develop 
a novel image processing algorithm to realiably 
detect the presence of malaria parasites from 
Plasmodium falciparum species in this smears of 
Giemsa stained peripheral blood sample. The 
proposed system was built using malaria samples 
that were specifically prepared by Eijkman 
Institute for Molecular Biology. Digital 
microphotographs were acquired using a digital 
camera connected to a light microscope. Global 
thresholding and connected component extraction 
were implemented to identify blood cell 
components. Two stage classification using separate 
set of features was built based on Bayes Decision 
Theory. Infected erythrocytes were identified with 
sensitivity of 92.59%, specificity of 99.65%, and 
PPV of 67.56%. The system provided an F1 
measure of 0.78.  

I. INTRODUCTION 
alaria is an infectious disease caused by 
unicellular protozoan parasite from the genus 

Plasmodium with 5 species known to infect human by 
entering bloodstream [1]. Those species are 
Plasmodium falciparum, Plasmodium vivax, 
Plasmodium malariae, Plasmodium ovale, and 
Plasmodium knowlesi [2]. It has been reported that 
malaria caused between 1.5 and 2.7 million deaths 
every year and, according to WHO, an amount of 
between US$ 5.0 and US$ 6.2 billion will be required 
per year for controlling and eliminating malaria 
globally during 2009 to 2015 periods [3].  

In Indonesia, the highest prevalence of malaria is 
found in remote and forest related areas including 
Papua, Kalimantan, and Sulawesi [4] where number of 

 
 

medical experts and high quality medical facilities are 
rarely sufficient.  

Furthermore, the key to overcome global health 
problem caused by malaria is through accurate 
diagnosis. Currently, there are several methods used to 
pronounce malaria including light microscopy, 
fluorescent microscopy, rapid antigen detection 
method, and polymerase chain reaction. Among these 
techniques, examining both thick and thin Giemsa 
stained blood smear under light microscope in order to 
find infecting parasites is considered to be the most 
sensitive and specific one [5].  

Although the use of light microscope in diagnosing 
malaria offers many advantages, it also has some 
drawbacks. The condition of blood smear is highly 
influenced by time and storage. Moreover, confirming 
negative status of malaria take considerable time and 
the diagnosis relies heavily on the expertise and 
experiences of medical practitioner in the field. These 
disadvantages become a burden in Mass Blood 
Screening (MBS) and in controlling the spread of 
malaria in rural area, not to mention in eastern part of 
Indonesia. Therefore, an automated image analysis 
system would improve the performance of microscopy 
by circumventing its main limitation in term of 
dependency on the ability of medical practitioner to 
diagnose blood image accurately, thus providing a 
milestone for fast and accurate diagnosis of malaria in 
Indonesia remote area.  

There have been several approaches to develop the 
algorithm of automated malaria diagnosis as addressed 
in [6]–[10]. These studies focused on either image 
processing technique to identify red blood cells and 
infecting parasites [6], morphological method for cell 
image segmentation and parasites detection [7], 
automated determination of parasitemia [8], or color 
segmentation for status identification [9]. Among these 
studies, some might be effective in cell segmentation, 
but less effective in selecting the features, while others 
achieved high specificity with prepared data sets but 
were not applicable in the field. In addition, only in [6] 
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was the algorithm built by mimicking the routine used 
by expert microscopists. 

The main objective of this study is to propose a new 
algorithm for automated malaria status identification 
based on the standard routine used by medical 
practitioner performing microscopy diagnosis of 
malaria. The system is developed to segment the image 
into parts, i.e. to separate blood cells from the 
background [11]. The result of this stage is followed by 
classifying each red blood cell as infected or 
non-infected in two stage classification scheme by first 
identifying the components of the parasite. The 
algorithm is expected to provide a positive and 
negative diagnosis of malaria with comparable 
sensitivity and specificity to conventional microscopy. 
The classification stage becomes the focus of 
discussion in this paper. 

This paper is organized in 5 sections. In Section 2, 
the materials and methods to obtain and standardize 
the input images are explained. Section 3 describes the 
theoretical and practical aspect of the proposed 
algorithm. Furthermore, the experimental results are 
presented and analyzed in Section 4. Finally, Section 5 
provides the conclusions. 

II. MATERIALS AND METHODS 

A. Malaria Samples 
All images were generated from malaria blood slides 

that are used for teaching purpose prepared by experts 
from Eijkman Institute for Molecular Biology. For the 
time being, Plasmodium falciparum was chosen to be 
the source of parasites sample due to its prevalence in 
Indonesia as well as being the most dangerous and 
major contributor to deaths related with this disease 
[4]. Each slide was stained using standard Giemsa 
staining protocol [5] and subjected to manual 
microscopy examination by expert microscopist. 
Therefore, data on species specific diagnosis and 
parasitemia level is available.  

Since in thin blood smear, there is no loss of parasite 
during staining; limited artefacts and overlapping 
cells; parasites are observable in their natural location 
and shape within the red blood cell since their 
morphology is conserved; and its extensive used in 
previous studies, as in [8], [9], [10], thin blood smears 
were used in this study. 

B. Image Acquisition 
As for generating the images, slides were examined 

under light microscope with 10x100 times 
magnification. The slides were examined under oil 
immersion in order to adjust the refractory index.  
Images were captured using a 5-megapixel Nikon 
digital sight DS 5Mc specifically designed and built-in 
for the light microscope. However, in this study, the 
images were generated using only 1.2 megapixel 
resolution without optical and digital zoom. Images 

were saved in the JPEG format in 1280 x 960 pixels 
size. Datasets, specifically dedicated for this study, 
were then created. In total, 773 microphotographs were 
acquired from 8 training slides while 60 
microphotographs were used in training set and 20 
microphotographs were used in testing set. 
 

C. Examining Blood Film forMalaria Parasites 
Fig.1 summarizes method used by human operator 

for analyzing blood smear images and its 
corresponding image processing algorithm. The 
design of algorithm will focus on classification of red 
blood cell as infected or non-infected based on the 
presence of the parasite from the species Plasmodium 
falciparum.  

In most cases, malaria parasites undergo either 
trophozoite or gametocyte stages when they are 
identified inside red blood cells [5]. Since each phase 
has specific and distinguishable features, identification 
of infecting parasites will rely heavily on recognizing 
their key elements.  

The evaluation of thin blood smears starts with 
identification of blood cells including Red Blood Cell 
(RBC), White Blood Cell (WBC), and platelets (see 
Fig.2). It proceeds further with recognition of RBC or 
erythrocytes. Inside red blood cells, development of the 
parasites starts with trophozoite stage or generally 
known as ring stage (see Fig.3). With proper Giemsa 
staining, nucleus of the parasite can be detected as one 
dark dot (indicated by number1 in Fig.3a) inside the 
RBC while the ring part will be easily distinguished as 
ring-shaped structure with more intense color 
compared to its surrounding (indicated by number 2 in 
Fig.3a). Based on these characteristics, medical 
practitioners will try to identify suspected parasite 
using presence of dark spot inside RBC as an indicator. 
Absence of black dot points out that the erythrocyte is 
not infected while erythrocytes with black dots need to 
be analyzed further.  
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Fig.1 Standard procedure of parasite identification of P.falciparum 
using manual microscopy and its corresponding image processing 
algorithm 

 
Fig. 2 A sample malaria blood image with blood cell components 
circled in white and numbered. 1: Red Blood Cell (RBC) 2:White 
Blood Cell (WBC) 3:platelets 4: Infected RBC 
 

    
                              (a)                                  (b) 

Fig.3 (a) Erythrocyte infected by ring stage parasite. 1: parasite’s 
nucleus 2: parasite’s cytoplasm 3: parasite’s vacuole 4:Maurer’s dots 
(b) Erythrocyte infected by gamete stage parasite  

 
Furthermore, in order to be identified as infected 

erythrocyte, the dot must be accompanied by cytoplasm 
of the parasite that appears as lighter area surrounding 
the nucleus with ring-shaped structure around it as 
clearly indicated by number 3 in Fig.3a. The cytoplasm 
of the parasite can have wide variety of shapes, from a 
fine ring to an irregular or amoeboid shape [5]. The 
presence of both nucleus and cytoplasm, as the main 
constituent of living cell, is the most important 
prerequisite in validating the infected or non-infected 
status of a red blood cell. When this requirement is not 
met, then the black dot is simply an artefact.   

There is a possibility that the cytoplasm has very dark 
or intense color and resembles a banana shaped 

structure as clearly illustrated in Fig.3b. These two 
features characterize Plasmodium falciparum in 
gametocyte stage. If this is not the case, presence of 
Maurer‘s dot (see Fig. 3a numbered with 4) will be the 
main attribute to confirm that the parasite is 
P.falciparum in ring stage. 

 

III. PROPOSED SYSTEM 
Substantially, this paper proposes an image 

processing algorithm to embrace the mechanism 
discussed in previous section up to the process of 
classifying each red blood cell as infected or 
non-infected based on the extracted components of the 
parasites. The scheme is initiated by implementing 
pre-processing stages that includes removal of 
unwanted noise. Blood cells, parasites, and other 
foreground objects were separated from the 
background by applying several global thresholding 
methods and visually comparing the results to 
qualitatively determine which technique yields the best 
end. The binary image is then subjected to hole filling 
process  

    
(a)                                           (b) 

    
(c)                                           (d) 

Fig.4  Color variability in acquired images 
 
and applied as marker to label blood cells. Each 

identified blood cell is fed into the classification model 
that is built as a two stage classifier using separate sets 
of features and Bayes Decision Rule [11] in each stage.  

A. Pre-processing 
The pre-processing stage is aimed to remove 

unwanted effects from the image and to adjust the 
image as necessary for further processing [13]. This 
stage consists of gray-scale conversion and 5x5 median 
filter. Fig.2 shows a typical image used in this study 
and may contain several foreground components 
including RBCs, WBCs, platelets, artefacts, and the 
parasite itself, which are numbered in ascending order. 
Since the input images demonstrate some degree of 
color variability as demonstrated in Fig. 4a–4d, the 
color image was converted to gray-scale image in order 
to reduce complexity without compromising the 
importance of parasite details.  
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Gray-scale conversion is followed by 5x5 median 
filter that substitutes the value of every pixel in the 
image by the median value of the intensity level in the 
neighborhood that will result in reduced sharp 
transitions, which is the indication of random noise, in 
intensities [13]. 5x5 median filter was observed to 
perform well in removing unwanted noise without 
removing parasite’s details. 

B. Segmentation of Blood Cell Components 
The proposed algorithm is pursued with image 

segmentation to separate foreground objects i.e. 
erythrocyte, other blood cell components, and potential 
parasites from the background. Unlike reference [14] 
and [15] that used edge detection and watershed 
algorithm for blood cell segmentation, the proposed 
algorithm relies heavily on thresholding. 
Pre-processed image was converted into a binary image 
by selecting a threshold value that maximally divides 
the image into two classes of intensity: C1 that contains 
intensity of background and C2 that contains intensity 
of foreground objects.  

It was observed that in most pre-processed images the 
intensity distribution between background and object 
pixels is not sufficiently distinct, and thus a single 
global threshold was not suitable. Consequently, the 
proposed system utilizes Otsu’s method [16] that 
automatically selects threshold level that maximizes 
the between-class variances of the histogram. In 
principle, Otsu's method iteratively calculates the 
separability of the two classes, C1 and C2, for different 
value of threshold and selects the one that give the 
highest value of between-class variance. 

Due to the biconcave nature of erythrocyte, some 
foreground objects might contain holes, i.e. part of 
foreground objects that have same intensity as 
background [12]. Therefore, hole filling process, 
designed based on extraction of connected component, 
was included in the proposed system. The idea of the 
algorithm is presented in Fig.5 and can be described as 
follow. Fig.6 shows a binary image of blood smear in 
which some erythrocyte contains hole, i.e. part of 
foreground object that has the same intensity as the 
background. Since the principle of CCL is finding 
foreground point [14], the complement of the image is 
first made before subjecting it to CCL. Following the 
CCL stage, the image is reconstructed by setting an 
intensity of 0 to the labeled objects otherwise the 
intensity was set to 255. Hole filling process is 
finalized by making the complement image of the 
reconstructed image. The result of hole filling process 
is subjected into another round of connected 
component extraction to obtain binary marker for 
individual cell. The whole process of blood cell 
segmentation is presented in Fig.7. 
 

C. Features extraction 
Two sets of feature were developed. The first set is 

based on the difference in intensity distribution 
between possibly infected erythrocytes and the healthy 
one as well as the area of the identified object. In 
gray-scale image, an infected erythrocyte will have 
some pixels with intensity value close to 0 due to the 
presence of parasite‘s nucleus. The similar condition 
applies to erythrocyte with artefacts but not with 
healthy one (see Fig.8). Using this concept, range of 
intensity or the numerical difference between the 
lowest and highest intensity value presented in each 
cell is proposed to be the first set of feature. Along with 
intensity range, area of segmented object is included in 
the first set of features to exclude small size objects like 
artefacts and platelets. 

As mentioned before, there are two important 
components, parasite's nucleus and cytoplasm, that 
become the prerequisite for status identification of thin 
blood smear image. Using the knowledge that 
parasite's cytoplasm appear lighter while parasite's 
nucleus appear darker than the cytoplasm of the 
erythrocyte, it is possible to confirm the infected cell by 
first divide each possibly infected cell into 3 region by 
means of segmentation using multiple thresholding. 
 
 

 
Fig.5 Hole filling process 

 

 
Fig.6  Binary image obtained with Otsu's method 
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Fig.7 Segmentation process 

 

 
Fig.8 Comparison between (from left to right) infected RBC,  
RBC with artefact, and healthy RBC 

  
It was evident that infected erythrocytes were 

successfully separated into 3 regions as shown in Fig.9. 
However, some erythrocytes with artefacts were also 
separated into 3 regions. Therefore, the algorithm was 
enhanced to obtained an area surrounding the possibly 
parasite‘s nucleus that has height that was two times 
the height of the nucleus and width that was two times 
the width of it. Within this area, the number of white 
and  

 
 

Fig.9 Infected erythrocyte and result after multiple threshold 
 

 
Fig.10 Obtaining white to black ratio 

 
black pixels was calculated, thus the ratio between 

white and black pixels in each cell could be generated 
as shown in Fig.10. This ratio was proposed to be used 
in classifying positively infected erythrocyte. 

D. Classification  
The classification of an erythrocyte as infected or not 

fell into two-stage classifier, as demonstrated in 
Fig.11, with an erythrocyte classified as possibly 
infected by parasite at the first node and the 
confirmation of the positive status at the second node. 
Taking into account that, at each node, two features 
could actually give enough information for 
classification, Bayes classifier is implemented in each 
node. 

The first classification stage can be considered as 
two-class case in which possibly infected RBCs were 
separated from normal one on the basis of range of 
intensity. This means that the segmented objects 
belong to either to class N or negative or to class Pp or 
possibly infected. For each cell, the range of intensity 
was measured and this feature was assigned as r. The 
probability density function [17] of the range of 
intensity measurement was calculated based on the 
determination of distribution of range of intensity for 
both classes using 60 training images.  

A segmented blood cell component would be 
assigned to class Pp or possibly infected by parasite if 
and only if:  

P(Pp|r) > P(N|r)       (1) 
with P(Pp|r) denotes the posterior probability that a 
cell belongs to possibly infected class based on range of 
intensity while P(N|r) denotes the posterior probability 
that a cell belongs to non-infected class based on range 
of intensity.  

In the second stage of classification, similar 
approach was utilized. The previously classified cells 
would be further identified as negative and belong to 
class N or positive and belong to class P based on the 
ratio of white area to black area alone. 
 

 
Fig.11 Diagram of final classification model 

 

IV. RESULTS 
The performance of this classification model was 

evaluated using 20 microphotographs obtained from 
different blood smears, to ensure the reproducibility of 
the proposed classifier. From the 20 thin blood smear 
images that contained 27 erythrocytes infected by 
ring-stage parasites, 25 infected RBCs were 
successfully identified, 2 infected erythrocytes were not 
identified (contributes to false negative), and 12 
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healthy erythrocytes or artefacts were identified as 
infected erythrocytes. Table 1 provides the detail of 
classification performance.  

Four measures of algorithm performance and 
accuracy are used: sensitivity, specificity, positive 
predictive value (PPV) and F1 score. These values are 
expressed in terms of true positives (TP), false positives 
(FP) and false negatives (FN): 
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The final classification model provided acceptable 

sensitivity. However, the improvement in sensitivity 
brought significant consequence regarding the low 
PPV and F1 score. One of the underlying causes might 
be the second stage classifier that identified possibly 
infected erythrocytes that have low w/b ratio as 
positively infected erythrocytes. This condition leaves 
more rooms for improvement in future work. 

All in all, the performance of the final classification 
model both for sample classification and individual 
infected cell identification are reasonable. However, it 
is important to recall that this evaluation was given for 
a limited number of samples. In some cases, the 
proposed algorithm failed to identify infected 
erythrocyte when the parasite was in the very early 
trophozoite stage since the cytoplasm of the parasite 
was not quite visible. 

 
TABLE I 

EXPERIMENTAL RESULTS USING PROPOSED METHOD 
 Positive Negative 
Num. of cells 27 3459 
Correctly 
classified cells 25 3447 

Incorrectly 
classified cells 2 12 

 

V. CONCLUSION 
An automated image processing and classification 

method should be able to assist expert microscopists in 
detecting infected erythrocytes from malaria thin blood 
smears. This study provides a good basis for those who 
are aiming to investigate the automated blood film 
analysis because, unlike prior algorithm, the method 
proposed in this paper was developed based on the 
routine manual microscopy.  

The main goal of this research was accomplished by 
solving two main problems by mean of image 
segmentation and developing a two stage classifier 
using Bayes Decision Rule in each stage. At first, the 
algorithm employed automatic threshold selection and 
successfully segmented blood cell components from 
background. It was further pursued by novel adaptation 
of CCL and connected component extraction to 
perform hole filling process. Two set of features based 
on image characteristics such as range of intensity and 
area of RBCs as well as features that mimic parasite‘s 
characteristics observed by human operator when 
diagnosing malaria were generated to first identify 
possibly infected erythrocytes and later used to confirm 
the infection.  

The classification model identified infected 
erythrocytes with sensitivity of 92.59%, specificity of 
99.65%, a PPV of 67.56%, and F1 score of 0.7812. 
Several problems were identified when the proposed 
system was used to analyzed images that have 
significant amount of clumped erythrocytes. In 
addition, the w/b ratio feature failed to identify infected 
erythrocyte when the parasites were in the very early 
trophozoite stage in which the cytoplasm of parasite 
was hardly apparent. 

As further work, it is planned to classify the phase of 
the parasite based on the shape and size of the 
parasites‘ cytoplasm as well as identification of 
Maurer‘s dot. Larger scale of experiment will also be 
necessary.  Moreover, limitation of this study will be its 
focus on the species of Plasmodium falciparum and 
thus might not be optimally applicable to other species. 
Therefore, further work will also involve some 
improvements to accommodate the diagnosis of other 
species of parasites. 
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